Vascular Endothelial Growth Factor-A and Islet Vascularization Are Necessary in Developing, but Not Adult, Pancreatic Islets

نویسندگان

  • Rachel B. Reinert
  • Marcela Brissova
  • Alena Shostak
  • Fong Cheng Pan
  • Greg Poffenberger
  • Qing Cai
  • Gregory L. Hundemer
  • Jeannelle Kantz
  • Courtney S. Thompson
  • Chunhua Dai
  • Owen P. McGuinness
  • Alvin C. Powers
چکیده

Pancreatic islets are highly vascularized mini-organs, and vascular endothelial growth factor (VEGF)-A is a critical factor in the development of islet vascularization. To investigate the role of VEGF-A and endothelial cells (ECs) in adult islets, we used complementary genetic approaches to temporally inactivate VEGF-A in developing mouse pancreatic and islet progenitor cells or in adult β-cells. Inactivation of VEGF-A early in development dramatically reduced pancreatic and islet vascularization, leading to reduced β-cell proliferation in both developing and adult islets and, ultimately, reduced β-cell mass and impaired glucose clearance. When VEGF-A was inactivated in adult β-cells, islet vascularization was reduced twofold. Surprisingly, even after 3 months of reduced islet vascularization, islet architecture and β-cell gene expression, mass, and function were preserved with only a minimal abnormality in glucose clearance. These data show that normal pancreatic VEGF-A expression is critical for the recruitment of ECs and the subsequent stimulation of endocrine cell proliferation during islet development. In contrast, although VEGF-A is required for maintaining the specialized vasculature observed in normal adult islets, adult β-cells can adapt and survive long-term reductions in islet vascularity. These results indicate that VEGF-A and islet vascularization have a lesser role in adult islet function and β-cell mass.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vascular endothelial growth factor coordinates islet innervation via vascular scaffolding.

Neurovascular alignment is a common anatomical feature of organs, but the mechanisms leading to this arrangement are incompletely understood. Here, we show that vascular endothelial growth factor (VEGF) signaling profoundly affects both vascularization and innervation of the pancreatic islet. In mature islets, nerves are closely associated with capillaries, but the islet vascularization process...

متن کامل

Pancreatic islet production of vascular endothelial growth factor--a is essential for islet vascularization, revascularization, and function.

To investigate molecular mechanisms controlling islet vascularization and revascularization after transplantation, we examined pancreatic expression of three families of angiogenic factors and their receptors in differentiating endocrine cells and adult islets. Using intravital lectin labeling, we demonstrated that development of islet microvasculature and establishment of islet blood flow occu...

متن کامل

Role of VEGF-A in Vascularization of Pancreatic Islets

Blood vessel endothelium has been recently shown to induce endocrine pancreatic development. Because pancreatic endocrine cells or islets express high levels of vascular endothelial growth factors, VEGFs, we investigated the role of a particular VEGF, VEGF-A, on islet vascularization and islet function. By deleting VEGF-A in the mouse pancreas, we show that endocrine cells signal back to the ad...

متن کامل

Bone marrow cell cotransplantation with islets improves their vascularization and function.

BACKGROUND.: To test the angiogenesis-promoting effects of bone marrow cells when cotransplanted with islets. METHODS.: Streptozotocin-induced diabetic BALB/c mice were transplanted syngeneically under the kidney capsule: (1) 200 islets, (2) 1 to 5x10 bone marrow cells, or (3) 200 islets and 1 to 5x10 bone marrow cells. All mice were evaluated for blood glucose, serum insulin, and glucose toler...

متن کامل

Co-Transplantation of VEGF-Expressing Human Embryonic Stem Cell Derived Mesenchymal Stem Cells to Enhance Islet Revascularization in Diabetic Nude Mice

Background: Pancreatic islet transplantation has emerged as a promising treatment for type I diabetes. However, its efficacy is severely hampered due to poor islet engraftment and revascularization, which have been resulted to partially loss of transplanted islets. It has been shown that local delivery of vascular endothelial growth factor (VEGF) could accelerate transplanted islet revasculari...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 62  شماره 

صفحات  -

تاریخ انتشار 2013